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Abstract: Normal wound healing progresses through inflammatory, proliferative and remodeling
phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays
critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation
or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in
a chronic, non-healing state that typically requires some form of intervention to guide the process back
to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation,
increased destruction of ECM components caused by elevated metalloproteinases and other enzymes
and improper activation of soluble mediators of the wound healing process. Collagen, being central
in the regulation of several of these processes, has been utilized as an adjunct wound therapy to
promote healing. In this work the significance of collagen in different biological processes relevant to
wound healing are reviewed and a summary of the current literature on the use of collagen-based
products in wound care is provided.

Keywords: extracellular matrix; collagen; signaling; inflammation; wound healing; collagen dressings;
engineered collagen

1. Introduction

Sophisticated regulation by a number of key factors including the environment of the
wound which is rich in extracellular matrix (ECM) drives the process of wound healing [1,2].
The complex macromolecules constituting the ECM include fibrous components (e.g., col-
lagens and elastins) and glycoprotein components (e.g., fibronectin, proteoglycans and
laminins). Each of these molecules interact to drive the process of tissue function, growth
and repair [3–5]. Wound repair is a complex process that is broadly categorized into the
following four phases which occur in a temporal sequence but are overlapping: hemostasis,
inflammation, proliferation (cellular infiltration, angiogenesis and re-epithelialization) and
maturation/remodeling (Figure 1) [1]. Key steps of the wound healing process, such
as hemostasis, inflammation and angiogenesis are responsive to the ECM, collagen and
its compounds [1,6–13]. In response to injury, collagen induces platelet activation and
aggregation resulting in the deposition of a fibrin clot at the injury site. In the inflammatory
stage of wound healing, immune cell activation drives the secretion of proinflammatory
cytokines which influence migration of fibroblasts, epithelial and endothelial cells. Fi-
broblasts contribute to collagen deposition. Simultaneously, collagen degradation releases
fragments that promote fibroblast proliferation and synthesis of growth factors that lead
to angiogenesis and re-epithelialization. Finally, the remodeling of the ECM (balance of
new matrix synthesis and matrix metalloproteinase degradative activities) determines
the acquisition of tensile strength [14–16]. In this work we sought to briefly review the
significance of collagen in different biological processes relevant to wound healing. The
current literature on the use of collagen-based products in wound care is summarized.
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Figure 1. Brief summary of wound healing phases. 
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Collagens are the most abundant protein found throughout the body. In the healing 
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plex morphologies [17–21]. The type, amount and organization of collagen changes in the 
healing wound and determines the tensile strength of the healed skin. Collagen III is the 
first to be synthesized in the early stages of wound healing and is replaced by collagen I, 
the dominant skin collagen. The initial random deposition of collagen during the granu-
lation tissue formation is further enhanced by lysyl oxidase enzyme-induced covalent 
cross-linking. This process matures the collagen into complex structures that are reori-
ented for tensile strength restoration. Collagen remodeling continues for months after 
wound closure and the tensile strength of the repaired tissue increases to about 80–85% of 
normal tissue if all processes proceed without any perturbations [16]. 

In the skin, the fibrillar collagens types I, III and V are the most common, followed 
by fibril-associated collagens type XII, XIV, XVI, and VI. The non-fibrillar collagens type 
IV, XVIII are found in the basement membrane of the skin [14,18,19,22,23]. 

3. Processing of Collagen in the Skin and Wound 
3.1. Biosynthesis and Cross-Linking 

In the healing wound, cells such as fibroblasts (resident, and myeloid cell converted 
fibroblasts) [24] are the main source of newly synthesized collagen. The biosynthesis ac-
tivities of fibril-forming collagens are the most extensively studied among all the collagens 
and involve multiple complex steps requiring the temporal and spatial coordination of 
several biochemical events [21,25]. Following transcription, the nascent/pre-pro-collagen 
is post-translationally modified in the endoplasmic reticulum into pro-collagen with the 
removal of the signal peptide on the N-terminus. Hydroxylation and glycosylation of 
amino acid residues results in the formation of the triple-helical structure characteristic of 
collagens. Supported by chaperone proteins, the pro-collagen triple-helical structure is 
stabilized for further processing and maturation in the Golgi apparatus and assembled 
into secretory vesicles that are extruded into the extracellular space where the pro-colla-
gen is enzymatically modified into tropocollagen. The final collagen fibril assembly occurs 
by covalent cross-linking. The mechanical properties (elasticity and reversible defor-
mation) of fibrillar collagens are dependent on this cross-linking process. Some of these 
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2. Types of Collagens in the Skin and Wound

Collagens are the most abundant protein found throughout the body. In the healing
wound, these collagens are synthesized by cells such as fibroblasts and modified into
complex morphologies [17–21]. The type, amount and organization of collagen changes
in the healing wound and determines the tensile strength of the healed skin. Collagen
III is the first to be synthesized in the early stages of wound healing and is replaced by
collagen I, the dominant skin collagen. The initial random deposition of collagen during
the granulation tissue formation is further enhanced by lysyl oxidase enzyme-induced
covalent cross-linking. This process matures the collagen into complex structures that are
reoriented for tensile strength restoration. Collagen remodeling continues for months after
wound closure and the tensile strength of the repaired tissue increases to about 80–85% of
normal tissue if all processes proceed without any perturbations [16].

In the skin, the fibrillar collagens types I, III and V are the most common, followed by
fibril-associated collagens type XII, XIV, XVI, and VI. The non-fibrillar collagens type IV,
XVIII are found in the basement membrane of the skin [14,18,19,22,23].

3. Processing of Collagen in the Skin and Wound
3.1. Biosynthesis and Cross-Linking

In the healing wound, cells such as fibroblasts (resident, and myeloid cell converted
fibroblasts) [24] are the main source of newly synthesized collagen. The biosynthesis activi-
ties of fibril-forming collagens are the most extensively studied among all the collagens
and involve multiple complex steps requiring the temporal and spatial coordination of
several biochemical events [21,25]. Following transcription, the nascent/pre-pro-collagen
is post-translationally modified in the endoplasmic reticulum into pro-collagen with the
removal of the signal peptide on the N-terminus. Hydroxylation and glycosylation of
amino acid residues results in the formation of the triple-helical structure characteristic
of collagens. Supported by chaperone proteins, the pro-collagen triple-helical structure is
stabilized for further processing and maturation in the Golgi apparatus and assembled into
secretory vesicles that are extruded into the extracellular space where the pro-collagen is
enzymatically modified into tropocollagen. The final collagen fibril assembly occurs by
covalent cross-linking. The mechanical properties (elasticity and reversible deformation)
of fibrillar collagens are dependent on this cross-linking process. Some of these cross-
links include: (1) disulfide bonds; (2) reducible and mature cross-links produced via the
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lysyl oxidase pathway; (3) transglutaminase cross-links; and (4) advanced glycation end
(AGE) product-mediated cross-links, among others. The nuances of cross-linking vary
with the type of collagen and the tissue context and creates a multi-layered hierarchical
structure [26]. Mature cross-links add resistance to shear stress. AGE-specific cross-links
contribute to increased stiffness of collagens in aged tissues.

3.2. Degradation

Collagen degradation is involved in inflammation, angiogenesis, and re-epithelialization
in the wound regulated by complex molecular pathways [27]. During the inflamma-
tion phase, soluble fragments from collagen degradation recruit immune cells such as
macrophages that patrol the wound for removal of microbes and devitalized tissue.
This aids in the transition to the proliferative phase. During this stage, collagen frag-
ments serve as potent angiogenic signals to promote the development of new blood
vessels. Keratinocyte migration is also promoted by collagen and contributes to wound
re-epithelialization [16,28,29]. Degradation is regulated by extracellular and intracellular
pathways. The former involves membrane-bound and secreted proteolytic enzymes. The
latter involves internalization of intact collagen fibrils and fragmented collagen (through
phagocytosis, macropinocytosis or endocytosis), followed by enzymatic breakdown. De-
fects in the regulated turnover of collagens results in pathological conditions such as
fibrosis [20,30–32].

The actions of proteolytic enzymes at different stages in the wound healing process
guides the remodeling of the repaired tissue. Two important enzyme families are the matrix
metalloproteinases (MMPs) and serine proteases. The production and secretion of these
enzymes are tightly regulated and are associated with specific cellular subtypes [12,33].
Among the MMPs, collagenases and gelatinases, which degrade intact and damaged
fibrillar collagen respectively, are key for collagen turnover during wound healing. Colla-
gens I and III are preferentially cleaved by MMP-1 (also called collagenase-1) and MMP-8
(collagenase-2) while collagen IV is degraded by the gelatinase MMP-9. Extensive research
has determined that collagenolytic enzymes can recognize, bind, unwind and cleave the in-
dividual strands of the triple helix. It is speculated that this high specificity could be driven
by the primary and super-secondary structures of collagen. MMPs drive physiological
(development and tissue repair) and pathological (tumorigenesis and metastasis) processes.
They also contribute to the release of bioactive fragments (also termed matricryptins) such
as endostatin and tumstatin from full-length collagens [34]. These fragments specifically
guide blood vessel pruning that in turn enables the re-establishment of the tissue archi-
tecture during healing [23,35–38]. Neutrophil elastase is a serine protease that aids in
the same process. A balance of enzyme activity and inhibition is required for normal
wound healing and is under tight regulatory control. Imbalances in the levels of these
enzymes are a factor in wound chronicity. Wounds infected with microbes that produce
these collagen-degrading enzymes add to the imbalance, leading to chronic wounds.

3.3. Receptor-Mediated Signaling

Collagen in all its forms, triple-helical, matrix-incorporated and degraded fragments,
are cognate ligands of diverse families of cell surface receptors including integrins, receptor
tyrosine kinases and immunoglobulin type receptors [1,39]. In the wound environment,
collagens mediate several key steps such as platelet aggregation, inflammation modulation,
angiogenesis, granulation tissue formation and re-epithelialization in a integrin signaling-
dependent manner [31,32,39]. Receptor tyrosine kinases such as Discoidin Domain Re-
ceptors (DDR-1 and DDR-2) bind matrix-incorporated collagen and regulate key wound
healing processes. Loss of function of these signaling molecules inhibits keratinocyte pro-
liferation and collagen remodeling during wound healing, resulting in wounds with low
tensile strength [40]. Abnormal signaling induced by collagen is observed in pathological
conditions such as scar formation [32].
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4. Roles for Collagen in the Skin and Wound

Collagen contributes to the mechanical strength and elasticity of tissues and acts as a nat-
ural substrate for cellular attachment, proliferation, and differentiation (Figure 1) [16,21,28,29].
Biofilm-mediated upregulation of MMP-2 via microRNAs creates a collagenolytic environ-
ment in the wound, sharply decreasing the collagen I/collagen III ratio and compromising
the biomechanical properties of the repaired skin, possibly making the repaired skin vulner-
able to wound recurrence [41]. A recent mapping study of collagen structure and function
suggested that in normal, injured tissue the collagen fibril is in a closed conformation that
upon exposure to blood following injury exposes cell- and ligand-binding sites that could
promote the wound healing process [20]. Several recent reviews detail roles of collagen in
the skin and wounds [1,42–50].

4.1. Role in Inflammation

The inflammatory phase of wound healing includes hemostasis and inflammation [51].
Collagen exposure due to injury activates the clotting cascade, resulting in a fibrin clot that
stops the initial bleeding. Collagen I and IV fragments can be mediators of inflammation
by acting as potent chemoattractants for neutrophils, enhancing phagocytosis and immune
responses and modulating gene expression [19,34]. Inflammation is a critical step in the
normal process of wound healing and drives the proliferation of fibroblasts which synthe-
size collagen and ECM [9]. The resolution of inflammation in a timely manner is equally
important in normal wound healing. Resolution of inflammation is an active process that is
driven by balanced pro and anti-inflammatory responses. A study using a stabilized colla-
gen matrix showed that collagen mounts a robust and sharp inflammatory response that is
transient and resolves rapidly to make way for wound healing to advance [6]. Furthermore,
an important role for collagen in promoting an anti-inflammatory, pro-angiogenic wound
macrophage phenotype via microRNA signaling has also been demonstrated [7,10].

4.2. Role in Angiogenesis

Angiogenesis, a critical component of physiological (development, wound healing)
and pathological (cancer) processes, is tightly regulated by the balanced activity of stimula-
tors and inhibitors. ECM remodeling provides critical support for vascular development
and collagens play an important role in this process [7,11,13,52,53]. Depending on the
type of collagen, the role might be as a promoter or inhibitor of angiogenesis. A live
analysis via multiphoton microscopy of neovessel formation in vitro identified a dynamic
modulation of collagen I that showed early stage remodeling of collagen fibrils progressing
to collagen condensation in later stages of development [54]. Collagen I is known to po-
tently stimulate angiogenesis in vitro and in vivo through engagement of specific integrin
receptors. Specifically, the C-propeptide fragment of collagen I recruits endothelial cells,
potentially triggering angiogenesis in the healing wound [12]. By contrast, proteolytic
collagen fragments of collagen IV and XVIII (e.g., endostatin, arresten, canstatin, tumstatin)
show anti-angiogenic properties [23,35]. Studies have shown a role for these fragments in
inhibiting proliferation and migration of endothelial cells and inducing endothelial cell
apoptosis. These fragments are of interest in curbing angiogenesis in several pathological
conditions [12,19,34].

4.3. Role in ECM Remodeling

Collagens are a structural component of the ECM that contribute to skin flexibility in
addition to stabilizing growth factors and regulating cell adhesion and signaling between
cells and ECM. In the process of wound healing, as the wound tissue undergoes remodeling
over years, the adult wound heals with the formation of a ‘normal’ scar. The scar tissue
regains anywhere from 50–80% of the original tensile strength of normal skin but may be
functionally deficient [55]. The main difference between the scar and unwounded skin
appears to be the density, fiber size and orientation of the collagen fibrils [28].
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Abnormalities in the ECM reconstitution during wound healing result in hypertrophic
and keloid scars. Scarring is a consequence of altered levels of the same molecules that
typically make up the ECM, i.e., collagen I and III, fibronectin and laminin are abnormally
high in scar tissue [55]. Collagen fiber orientation in scars (normotrophic, hypertrophic and
keloid) are parallel to the epithelial surface unlike that of normal skin where the fibers form
a three-dimensional basketweave-like network [56]. There are structural and compositional
differences between these types of scars. Keloid scars are characterized by abnormally
thick bundles of collagen that are poorly organized with fewer cross-links that are found in
the deep dermis compared to superficial dermic. Hypertrophic scars have thinner collagen
bundles than keloid or normotrophic scars [57–59]. The ratio of collagen I to III is higher in
keloids than normotrophic scars. Even within the keloid scar, there is a heterogeneity to
the collagen I/III ratio [14].

5. Effect of Aging on Collagen in the Skin and Wound

The aged skin has lower collagen density that is increasingly cross-linked and frag-
mented [60,61]. Together with senescence, collagen fiber remodeling results in increased
stiffness. Furthermore, the aging skin has a higher percentage of collagen III [62]. Collagen
organization visualized through Fourier transformed infrared imaging, scanning elec-
tron microscopy and histological staining showed fragmented, clustered and coarse fiber
bundles that are oriented parallel to the skin surface in aging skin [63–65]. Age-induced
alterations (reduced collagen deposition and increased non-enzymatic cross-linking) in
collagen impact the mechanical environment of the skin and predispose it to wound healing
impairments [66–68].

6. Collagen Formats and Applications in Wound Healing

Aberrations in the normal progression through the wound healing phases results in
the development of chronic wounds that need to be managed appropriately for healing
to complete. Key factors in the hostile environment of a chronic wound are persistent
inflammation, increased destruction of ECM components due to elevated MMPs and
improper activation of soluble mediators of the wound healing process. Because collagen
is an important regulator of several of these processes, it has been utilized as an adjunct
wound therapy to promote healing. Biocompatibility, low immunogenicity, ability to recruit
wound healing responsive cells (macrophages, fibroblasts etc.) and ease of application
are some of the reasons why collagen-based biomaterials have been used for wound
dressings. Standard collagen sources are typically bovine, equine, avian or porcine in
origin (Figure 2) [69]. There are significant disadvantages associated with the use of animal-
based collagen products including development of allergic reactions, transmission of prion
diseases (e.g., bovine spongiform encephalopathy) and microbial contamination [70,71].
Furthermore, in some communities there are religious constraints associated with use of
bovine- and porcine-derived tissue. Therefore, alternative natural (marine) or engineered
(recombinant human collagen from bacterial or plant material) sources of collagen have
been considered.

Collagen applied as adjunct therapy in wound healing could promote healing poten-
tially by acting as: (i) a decoy/sink for the raging MMPs and other enzymes in the wound
thereby abating inflammation and restoring progression into the reparative stages; (ii) a
substrate aiding in the migration of key cellular components of wound healing; or (iii) a
promoter of a proangiogenic, anti-inflammatory environment to resolve the injury towards
healing [6–8,10,17,53].
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6.1. Collagen Wound Dressings

Collagen applications in wound healing have been tested in numerous ways. They
have been used as matrices/scaffolds for tissue engineering, hemostatics, soft tissue re-
pair and more recently as a drug delivery system [6,10,11,26,53,72–80]. Collagen wound
dressings contain collagen blended with natural and synthetic polymers such as polyethy-
lene oxide, poly (L-lactic acid), hyaluronic acid, elastin and silk fibroin, alginate, chitosan,
etc [73,81–85]. These blended fabrications have incorporated other additives such as in-
sulin [86], antibiotics [87–92] or gold nanoparticles [93–95] and have been tested mostly
in in vitro studies or small animal models of wound healing. An evidence-based review
of clinical studies on antibacterial integrated collagen wound dressings indicated that
most studies were limited by small sample sizes and mixed chronic wound etiologies [46].
Therefore, although positive outcomes are reported, robust evaluation of the specific value
of these integrated wound dressings as it related to clinical diabetic foot ulcers remains
promising but inconclusive. The need for larger, standardized clinical studies to claim
treatment efficacy thus arises.

A plethora of formulations of collagen as amorphous gels, sheet or powder forms,
combined with other agents (e.g., silver, for the antimicrobial properties, or ethylenedi-
aminetetraacetic acid (EDTA), carboxymethyl cellulose (CMC) or alginate, i.e., collagen
enhancers) are available as wound dressings in the market (Figure 2) [6–8,10,46,53,77,96].
The sponge/fleece version of collagen has been tested as a cell-free matrix that promoted
new tissue formation in a limited study [47,75]. Particulate or powdered collagen have min-
imal covalent cross-linking and are active upon administration as signaling molecules [77].

Collagen is also used as a surface coating to enhance moisture retention and promote
cell adhesion within scaffolds/matrices [73,81–84,86–95]. Water retention is important to
keep the wound bed moist. The arginine-glycine-aspartic acid (RGD) sites on collagen binds
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integrins of cells and promotes cell adhesion and migration of fibroblasts and keratinocytes
in in vitro studies. A collagen-coated scaffold implanted in a rat burn wound model showed
faster wound re-epithelialization and healing compared to standard of care dressing [97].

The technological processing of collagen tissues to hydrolysates and subsequent
rebuilding into formats used for clinical applications was recently reviewed [98]. Several
publications show the potential for collagen as a flexible biomaterial for wound healing.
However, there is still a need for high-quality studies and randomized control trials to
support their clinical applications [46,75].

In recent years interest in collagen nanostructures has surged [78]. Nano collagen is a
relatively new material and is made of collagen reduced to a nanoparticulate size. This
nano-size provides a higher surface area-to-volume ratio. Electrospinning is the primary
technique used to produce biocompatible nano collagen fibers. Collagen nanoparticles
have been tested for their application as therapeutic drug delivery systems. For example, a
gold-loaded hydroxyapatite collagen nanostructure was tested in vitro and was shown to
promote cell adhesion, growth and proliferation [99]. The localized delivery of therapeutic
factors using a material that is stable and compatible with the tissue microenvironment of
the wound is a key advantage of nano collagens [78]. Insufficient knowledge and research
of these nano particles is a limiting factor and requires additional in-depth study.

6.1.1. Recombinant Human Collagen

The risks associated with the use of animal sources of collagen can be overcome by
the use of alternatively sourced collagen. Plant-derived human collagen (PDHC; typically
recombinant human collagen engineered in plants like tobacco) have similar scaffold
properties to wild-type human collagen [100–104]. Various formulations (gel, matrix,
electrospun scaffolds and lyophilized sponges) of PDHC have been experimentally derived
and tested (Figure 2) [102]. A recent pilot study used PDHC on chronic ulcers of various
etiologies and demonstrated that the product was safe for use and promoted faster wound
closure [105].

A potential problem with recombinant human collagens from non-animal sources
is the requirement for post-translational proline hydroxylation that potentially limits
large scale production [106]. The discovery of collagen-like proteins, Scl1 and Scl2 from
Streptococcus pyogenes led to the generation of constructs in a recombinant E. coli system in
an effort to establish large-scale production methods. Bacterial-derived collagens serve as a
biosynthetic ground-up approach, where non-animal collagen with no specific bioactivity
can be manipulated for desired interactions. A test of this system in the context of human
mesenchymal stem cells was shown to have chondrogenic potential [107].

6.1.2. Marine Collagen

Collagen I has been extracted from various marine sources such as fish skin, jellyfish,
sponges and squid (Figure 2) [70,71,108–116]. Marine-derived collagen I was shown to
promote wound healing in experimental (rodent models) and clinical studies [117–119].
The marine source of collagen is beneficial because the abundance of material that would
typically be considered ‘waste products’ in the fish processing industry can be recycled
into collagen-based wound dressings as well as derivatized into dietary supplements for
weight management and sugar control [108].

Marine-derived collagens are chemically and mechanically different from mammalian
collagen but are considered favorable for biomedical applications due to high biodegrad-
ability and biocompatibility and low immunogenicity [70]. Marine-derived collagen I
thermostability has been tested by several groups and found to be lower than mammalian-
derived collagen suggesting a need for engineering additional cross-links prior to use in
wound healing or other biological applications. These differences have been attributed
to the amino acid (particularly glycine, proline and hydroxyproline) content of the colla-
gen I [69]. A systematic review of collagen from marine sources in skin wound healing
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described studies performed in animal models and highlighted the potential for wound
healing applications [70]. The field is now ready for clinical trials.

6.2. Percutaneous Collagen Induction

In 1995, a method called subcision was introduced as a minimally invasive way
to treat scars using extremely fine needles to disrupt dermal collagen to trigger dermal
remodeling and skin resurfacing [120–122]. This method is now known as microneedling
or percutaneous collagen induction (PCI). The microneedles puncture the outer layers
of the skin into the papillary dermis to initiate the release of growth factors that trigger
collagen I and elastin formation. This method has been applied to the treatment of acne,
scars, facial rejuvenation, alopecia, pigmentation issues, etc. in small cohort clinical studies.
A recent review of the evidence available on PCI techniques for scar treatment identified
benefits such as little to no side effects and versatility of application [120]. However, this
and other reviews have pointed out the lack of high-quality studies with sufficient numbers
of patients following a standardized outcome protocol [121,122].

6.3. Hydrolyzed Collagen

Native collagen can be denatured and hydrolyzed with acids, alkali or thermal treat-
ment (with enzymatic digestion) to produce low molecular weight (3–6 KDa) peptides
with unique physicochemical and biological properties compared to the native form [123].
The advantages of hydrolyzed collagen (HC) are that it is highly soluble, easily absorbed
and distributed in the human body, cost effective, easily emulsified and stabilized for use.
However, a disadvantage is that unlike the native form, HC needs to be combined with
other biopolymers (cellulose or chitosan) to form scaffolds or films. Interestingly, HC has
antioxidant and antimicrobial activities. Hydrogel preparations of HC were shown to
have antibacterial activity against Escherichia coli and Staphylococcus aureus. These prepa-
rations were also shown to promote cell proliferation and migration and burn wound
healing. HC in electrospun nanofibrous scaffolds was shown to have biomechanical and
antimicrobial properties [81,110]. A recent review on the different types of HC, sources
and applications as biomaterials provides additional details on this form of collagen [124].
Hydrolyzed collagen powder is available in the market as a dressing for moderate to heav-
ily exudative wounds. A small randomized clinical trial on patients with burn wounds
that used a hydrolyzed collagen supplement suggested a promising role for HC in wound
healing [125].

6.4. Collagen Bioink

Three dimensional (3D) bioprinting is an evolving adaptive manufacturing technique
that offers the development of wound treatments that can deal with the issues presented by
traditional wound dressings (i.e., need for frequent dressing change, adherence to wound
tissue making dressing changes painful) [126]. The bioprinting process integrates cell-laden
hydrogels, also called bioinks, together with motorized systems to create complex structures
that can be catered precisely to the patient or situation in question [79,80,126–128]. In 2009,
a 3D-printed human skin construct incorporating collagen I together with fibroblasts
and keratinocytes was the first successful attempt at creating a skin implant. This was
followed by other studies that have improved on this attempt and even tested them in
situ in a porcine model. The porcine studies showed that the collagen–fibrinogen bioink-
printed skin implants incorporating cells significantly enhanced wound re-epithelialization
compared to control treatments. Further developments in this line include a laser-assisted
bioprinting and robotic solid freeform fabrications to provide contactless, automated
solutions using collagen bioinks [129]. As of 2020, there are only about 30 published
research articles on this topic.

Collagen bioinks are currently the most popular material for 3D engineering, primarily
because of the history of their use in clinical practice, biocompatibility and low immuno-
genicity. Collagen I is the most common type used for bioink manufacturing and has been
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used in the laboratory-based bioprinting of skin, bone and cartilage, cardiovascular tissues,
liver, nerve regeneration and cornea with limited testing conducted in vitro and in vivo
(small animal models) [79,80,126].

A key issue with collagen bioinks is the need for specific pH and temperatures to
initiate matrix gelation that could be toxic to cells [130]. Additional challenges include
precise tissue detailing (including development of structures like sweat glands and hair
follicles) and the need for improved cross-linking techniques for structural control of the
bioink-generated product [126]. The production of constructs for large wound areas is a
challenge. Furthermore, the search for a 3D printed human skin graft that can support
functions such as thermoregulation, touch or sweat is still unfulfilled [129,131].

7. Clinical Studies

A search of clinicaltrials.gov using the criteria (collagen + skin + wound) identified
45 clinical studies. This may be viewed as early phase in clinical development. Various
formats of collagen dressings have been included in these studies (Table 1). Among the top
three formats used in the context of skin health and wound healing are matrices, dietary
supplements and sponges with antimicrobials incorporated. Composites of collagen
with silk fibroin, alginate and other polymers were also noted. Some of these studies
were terminated or withdrawn (~11%) either due to funding limitations, change in study
prioritization or undisclosed reasons. Several studies are in the actively recruiting stage.
The lack of results associated with the completed studies makes the evaluation of the
impact of these collagen applications for clinical use difficult at this time.

Table 1. Collagen dressing formats for wound healing clinical studies.

Collagen Format Number of Studies

Matrix/scaffold/mesh 15

Dietary supplement 8

Sponge 7

Percutaneous induction/microneedling 5

Composites (e.g., silk fibroin, alginate) 5

Gel 3

Paste/powder 2

8. Collagen Wound Dressing Market

In 2019, the global collagen dressings market was valued at approximately USD
926 million and is projected to expand at a compound annual growth rate (CAGR) of ~5%
from 2020 to 2030 [132,133]. North America is projected to dominate the global collagen
dressings market. Key drivers of the market are collagen composites that include an
antimicrobial principle. Despite the rising interest in alternative (and less immunogenic)
sources of collagen, bovine origin collagen dominates the markets. Tissue engineering
advances such as the electrospinning and 3D bioprinting methods of producing collagen
composites are expected to positively impact the market [132,133].

9. Closing Remarks

A Pubmed search using the keywords collagen and wound healing lists >10,000
publications promoting various collagen formats as being ideal for wound-healing ap-
plications. The poor mechanical and thermal properties of collagen are moving the field
towards the use of blends with other materials such as alginate, chitosan and cellulose.
However, depending on the ratio of mixtures in these blends, it may not be possible to
clearly delineate the exact impact of the collagen component on the treatment outcomes.
Most of the published studies are based on in vitro or small animal models. Preclinical
porcine studies are necessary to test the translational value of the reported basic science

clinicaltrials.gov
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investigations. Collagens can directly modulate the wound microenvironment, serve as
a scaffold for cellular attachment and function or deliver biologically active principles
or antimicrobials to aid in wound healing. Therefore, for effective translational value,
personalization or tailoring collagen biomaterials to the therapeutic need is critical. This
nuance is not captured well in current research. While technology is evolving rapidly to
produce customized collagen composite scaffolds or nanoparticles incorporating stem cells
and other bioactive molecules, the research that can bring these products to clinical practice
is limited. The leap from bench to bedside requires rigorous preclinical and clinical testing
with demonstrable beneficial outcomes and that is a gap in current collagen biomaterials
translational research.
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